Code: 20EC3402

II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2024

COMMUNICATION THEORY (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

					3.4			
			BL	СО	Max.			
					Marks			
UNIT-I								
1	a)	Analyze the working of Costas Loop with	L4	CO4	7 M			
		neat sketches.						
	b)	Distinguish between various AM methods.	L4	CO4	7 M			
OR								
2	a)	Analyze the principle of operation of super	L4	CO4	8 M			
		heterodyne receiver.						
	b)	Summarize the working of switching	L2	CO1	6 M			
		modulator.						
UNIT-II								
3	a)	Outline about single tone modulation of FM	L2	CO2	7 M			
		with expressions.						
	b)	Summarize about FM radio broadcasting	L2	CO2	7 M			
		with neat sketches.						
OR								

1	۵)	Eveloin about DII used in EM	1.2	CO2	7 1/			
4	a)	Explain about PLL used in FM	L2	CO2	7 M			
		demodulation.						
	b)	Summarize about FM Stereo multiplexing	L2	CO2	7 M			
		with neat sketches.						
UNIT-III								
5	a)	State some useful classifications of random	L2	CO4	7 M			
		processes.						
	b)	Auto-correlation function of an ergodic	L4	CO4	7 M			
		stationary random process with no periodic						
		component is given as $25+4/(1+6\tau^2)$.						
		Find the variance and mean of the process.						
	<u> </u>	OR		1				
6	a)	State and prove the properties of	L2	CO4	7 M			
		auto-correlation function.						
	b)	A random process is given as	L4	CO4	7 M			
		$X(t) = A\cos(\omega_0 t + \Theta)$ where Θ is a uniformly						
		distributed random variable on $(0, \pi/2)$. Find						
		whether $X(t)$ is wide sense stationary or not.						
UNIT-IV								
7	a)	Explain about noise performance in FM	L2	CO4	7 M			
		receiver.						
	b)	Distinguish between AM and FM in terms	L4	CO4	7 M			
		of noise factors.						
	1	OR	<u> </u>	<u> </u>				
8	a)	Summarize about pre-emphasis and	L2	CO4	7 M			
		de-emphasis.						
	b)	Analyze the noise performance in SSB	L4	CO4	7 M			
	′	receiver.						

UNIT-V							
9	a)	Explain about various types of sampling	L2	CO3	7 M		
		with neat sketches.					
	b)	Summarize about the generation of PAM.	L2	CO3	7 M		
OR							
10	a)	Outline about uniform and non-uniform	L2	CO3	6 M		
		quantization methods.					
	b)	Analyze the working principle of TDM with	L4	CO3	8 M		
		neat sketches.					